HEAT EXCHANGE IN TUBES WITH PERMEABLE
WALLS IN THE PRESENCE OF INTERNAL HEAT
SOURCES
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Solutions are obtained for the energy equation for fluid flow in tubes with uniform injection of
suction and heat sources in the stream.

Problems about the heat exchange in tubes with injection or suction through permeable walls in the ab-
sence of heat liberation in the flow have been examined in a number of papers, e.g., for boundary conditions of
the first kind in [1-4], and for boundary conditions of the second kind in [3, 5]. Interest in these problems is
evoked principally by the extensive utilization of injection inthe interests of heat shielding, and suction for the
intensification of heat emission.

Solutions are obtained in this paper for the energy equation in the presence of internal heat sources dis-
tributed uniformly over the tube length in the case of boundary conditions of the first and second kinds. 1t is
assumed that the flow is stabilized hydrodynamically and the coefficient of effective heat conduction y does
not vary along the tube length, the axial heat conduction is negligibly small, and the physical properties of the
fluid are constant. Taking account of the assumptions made, the energy equation is written in the form
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where ¢, = 2% gqon"‘dq is the mean density of the heat sources in a tube section,
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The axial and radial velocity components for a hydrodynamically stabilized flow can be expressed in
terms of one function F (n; Rey) [6, 7]
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where F satisfies the boundary conditions
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Taking account of (2) in the dimensionless variables
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we obtain from (1)
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Let us examine the solution of (3) under boundary conditions of the first kind by considering the temper-
ature of the fluid at the entrance to the tube and at the walls to be constant and equal to T, and Ty, respec-
tively:
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Let us represent the solution of (3) with the'boundary conditions (4) in the form

0@ ) =0, +6,(Z, ),

where 6x(n) is the solution of the problem in the thermal stabilization domain for large values of Z
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To determine 6, we obtain the equation
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with the boundary conditions
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The solution of (7), analogous to the solutions of a problem on heat exchange in tubes with suction and
injection in the absence of internal heat sources considered in [1-4]1, has the form
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where € and ¢y are the eigenvalues and eigenfunctions of the following problem:
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and the constants Ap are determined by the expression
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The solution of (6) will be
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For Pey = 0 we obtain the temperature distribution in a tube with impermeable walls [8] from (10)
\ 1
Let us determine the Nusselt number Nu= — ~2—( 36 ) , where 0,= 8 8F'dn is the average mass
N /n=1
stream temperature. Using (10), we obtain the following formula for Nu in the stabilized heat-transfer do-
main:
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As an illustration, let us present the results of a computation using (10) and (11) for laminar flow in the
case of a uniform distribution of internal heat sources over the tube section for fluid flow with high Prandtl
numbers (small Rey values, respectively), when the flow hydrodynamlcs is described by a Poiseuille velocity
profile. Then
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Fig. 1. Temperature distribution over a circular pipe section for
a constant wall temperature: 1) Pey =—16; 2)—8; 3) —4; 4) 0;
5) 4; 6) 8.

Fig. 2. Dependence Nuy(Pey) in the presence and absence of in-
ternal heat sources.

v=1.f=1.Fm)=L;"“u3—a)n—n=1. (12)

Temperature profiles in a circular tube for different values of the parameter Pey characterizing the
intensity of the injection or suction are presented in Fig. 1. It is seen from Fig. 1 that injection (Pey < 0)
diminishes for a given wall temperature, while suction (Pe > 0) increases the temperature in the flow. The
dependence of the Nusselt number on the parameter Pey is represented in Fig. 2 for a plane (curve 1) and
circular (curve 2) tube. As the suction velocity increases the Nusselt number grows, and the injection dimin-
ishes, which agrees with the nature of the behavior in the absence of internal heat sources [1-4]. Let us note
that Nuy tends to the limit values

lim Nu, = Pe,, hm Nu, = 2"t (1).
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as the suction and injection intensity increase.

The limit dependence for suction is the same as for qy = 0, while the analogy is spoiled for injection
since ll;im Nu, = 0. according to [2-4].
ev-O—un
In the case of boundary conditions of the second kind, we assume that the total heat flux through the wall
qw is known, which consists of conductive and convective flows in the presence of blowing or suction. Then
the first two boundary conditions in (4) remain valid, and we use the one-dimensional energy conservation
equation following from (3):
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We represent the solution of (3) in a form analogous to (5), where we now obtain for the section of de-
veloped heat transfer with (13) taken into account
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The function ¥ is found from the solution of the equation
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The equation to determine 6; agrees with (7) but the boundary conditions will be
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Taking account of (16), expression (8), inwhiche, and ¢, are determined from (9) for the boundary
conditions ¢}, (0) =0, @} (1) = Peywn(1)/2, and the constants Ay are expressed by the formula
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will be a solution of (7).

The solution of (15) has the form
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Using (17), we determine the Nusselt number in the domain of developed heat transfer
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For Pey = 0, both (17) and (18) go over into the appropriate expressions for the temperature field and Nux in
tubes with impermeable walls for a given heat flux and the presence of internal heat sources [8]. In the case

Q — =, solutions for heat transfer with suction and injection follow from (17) and (18) in the absence of heat

liberation in the stream [3, 5]. For @ =—1, when the average mass temperature and the wall temperature do
not vary along the tube length, (17) and (18) agree with (10) and (11).

Asymptotic formulas for the temperature field and Nusselt number can be obtained for strong injection
and suction (| Pey| > 1). For injection the first terms describing heat transmission by heat conduction can be
omitted in (15) with the exception of the domain near the axis. Without taking this term and the correspodning
boundary condition ¥"'(0) = 0 into account, we obtain the approximate temperature distribution for strong in-
jection which is valid over the whole fube section except for a narrow zone near the axis:
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Taking account of F(1) = v(1) = 1, we obtain the following asymptotic expression
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for suction from (17), from which it is seen that for strong suction the temperature is practically constant in
the whole tube section while a narrow thermal boundary layer (of thickness O(1/Pey)) in which a sharp tem~
perature variation occurs, is formed at the wall. We have correspondingly from (18)
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The Nusselt number determined according to (18) depends on @ exactly as for flows in impermeable
tubes [8], and consequently, can take on negative values, which is a substantial disadvantage. Hence, it is ex-
pedient to determine Nu, analogously to [8], in such a way that there would be no dependence of Nu on @,
which will significantly facilitate performance of practical computations. To this end, let us represent (17) in
the form
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Fig. 3. Temperature distribution over the section of a circular
tube under adiabatic conditions.

Fig. 4. Dependence of the adiabatic wall temperature on the
parameter Pey: 1) @ =0; 2) 1.
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Here $,(n) is the temperature field for Q = 0, when the tube wall is adiabatic, and P1(n) is the temperature
in the absence of internal heat sources. The temperature distribution $,(7) over the section of a circular
tube, and the dependence of the adiabatic wall temperature #,(1). on the parameter Pey computed under con-
ditions (12) are shown, respectively, in Figs. 3 and 4. Injection substantially reduces, while suction increases
the stream and wall temperatures, where as follows from Fig. 3, the maximum temperature during injection is
shifted from the wall to the stream.

Taking (19) into account, we determine the Nusselt number in terms of the function ¥ 4(n)
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In this case Nux; is independent of Q@ and agrees with the formulas obtained in [3, 5] for qy = 0, and the lines
3 and 4 shown in Fig. 2, respectively, for the plane and circular pipe with a Poiseuille velocity profile. To
compute the wall temperature 6,y = 0m + ¥ (1) for given values of Q and Pey, it is sufficient to know the de-
pendence of Nuyy and ¥,(1) on Pey as follows from (14) and (20).

NOTATION

X, r, longitudinal and radial coordinates; p, density; Cp» specific heat; AT, coefficients of molecular and
turbulent heat conduction; v, kinematic viscosity; rg, tube radius; U, mean velocity at tube entrance; V,
suction or injection rate; qy, density of internal heat sources; Pey = 2rgVivy y =1+ AT/A; @ =0, fora
plane, and o = 1 for a circular tube.
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METHODOLOGICAL PECULIARITIES OF SHORT
MEASUREMENTS AT THE STAGE OF IRREGULAR
THERMAL REGIME

G. G. Spirin . UDC 536.22.083

The article discusses the peculiarities of thermophysical measurements when low-inertia heat-
ers are used; it also presents the results of measurements of thermal activity.

The present technical state and the technology of applying thin conducting films open up broad possibil~
ities of using them in thermophysical experiments. Particularly promising is their use as low-inertia ele-
ments for short impulse measurements at the stage of irregular thermal regime. With their aid it is possible
to study the thermophysical characteristics of such objects as liquids, gases, or solids that ensure adhesion
to the layers that had been vaporized on. Calculations show [1] that when vaporized-on resistor elements (RE)
are used, the influence of the proper heat capacity of the element on the results of measuring the thermal ac-
tivity of a solid or liquid is practically insignificant already when impulse measurements last 10 °- 107 sec.
When elements with extremely small thickness (70-80 A are used, this time can be reduced to 10” ¢ sec.

In short-term thermophysical experiments, thin metal filaments can be used together with vaporized-on
layers. The technology of making such filaments has by now been well mastered. Evaluations of the influence
of the proper heat capacity of a filament on the results of the measurement of thermal conductivity show [2]
that for a filament with radius 10 ° m the influence of the heat capacity is small already whenthe impulses last
so much as 1072 sec.

Since the measurements are short, the method is bound to have a number of advantages. In particular,
favorable conditions are created for using thermal measurements to diagnose dynamic processes. Some ex-
perience in using thermal diagnostics for studying chemical reactions, phase transformations, diffusion and
other processes has already found expression in various works [3-8].

The smallness of the spatial region in which the temperature field is non-steady-state is another favor-
able feature of these measurements: heat transfer occurring under such specific conditions reflects the mo-
lecular heat transfer that is only slightly distorted by radiation [9, 10]. In consequence, short measurements
have an advantage as a matter of principle as compared with a number of other methods, inparticular, steady-
state methods.

On the other hand, if methods of short measurement are to be applied correctly, we must examine the
peculiarities of this application occasioned by the small length of diffusion of the temperature field into the
investigated medium, by the considerable temperature gradient, etc.
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